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Abstract 
 

Neural networks were trained with backpropagation to map location-specific letter identities (letters 

coded as a function of their position in a horizontal array) onto location-invariant lexical 

representations. Networks were trained on a corpus of 1179 real words, and on artificial lexica in 

which the importance of letter order was systematically manipulated. Networks were tested with two 

benchmark phenomena – transposed-letter priming and relative-position priming – thought to reflect 

flexible orthographic processing in skilled readers. Networks were shown to exhibit the desired 

priming effects, and the sizes of the effects were shown to depend on the relative importance of 

letter order information for performing location invariant mapping. Presenting words at different 

locations was found to be critical for building flexible orthographic representations in these networks, 

since this flexibility was absent when stimulus location did not vary. 
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1.  Introduction 
Several recent computational models of visual object recognition posit a hierarchical 

system of processing in which simple and local features are gradually integrated into more 

abstract and complex features using receptive fields of increasing size [1]. These hierarchical 

architectures account for the progressive invariance to size, shape, and location, that is 

achieved as one moves through the visual pathways from V1, V2 up to occipital and temporal 

cortex. The mechanisms that we develop to process printed words while learning to read, 

borrow heavily from the basic machinery of visual object recognition [2, 3]. Therefore visual 

word recognition shares many of the characteristics of object recognition. Location 

invariance is one such characteristic, since skilled readers are able to identity words that are 

displaced relative to a central fixation point without having to re-fixate the centre of the 

word. Given that even very small shifts of location imply a complete change in retinal activity, 

this implies that some form of non-retinotopic code is involved in visual word recognition. 

The key question concerns the precise nature of this location-invariant, word-centered code, 

and how it is activated by retinotopic features.  

Some psychological models have postulated that the shift from a location-specific, 

retinotopic orthographic code to a location-invariant orthographic code is achieved by coding 

for combinations of letters in the correct order for both contiguous and non-contiguous 

letter sequences [2, 4]. For example, in the models of Grainger and van Heuven [5] and 

Whitney [6], so-called open bigrams code two-letter combinations in a position-independent 

yet ordered, but not necessarily contiguous fashion. For example, WITH is composed of 

following open bigrams: WI, WT, WH, IT, IH and TH. In certain versions of these models 

activation of open bigrams can be modulated by distance (i.e., contiguous bigrams like WI are 

more active than non-contiguous bigrams such as IH). An important characteristic of open 

bigrams is that, while they allow for non-contiguous letter combinations, they preserve letter 

order. For example, IW is not an open bigram for the word WITH. 

The theoretical backbone of the present study is Grainger and van Heuven’s [5] model 

of orthographic processing [see also 7] illustrated in Figure 1. In this model a bank of 

location-specific letter detectors perform parallel independent letter identification. A given 

configuration of visual features at a specific location along the horizontal meridian signals the 

presence of a given letter at that location (see [8, 9] for evidence in favor of such retinotopic 

letter detectors). These location-specific letter detectors then activate location-independent 

open-bigram units. Open-bigrams then send activation to all compatible word 

representations in an interactive-activation network.  



 

Figure 1 - Grainger and van Heuven's model of orthographic processing. Visual features extracted from a 

printed word feed activation into a bank of location-specific alphabetic character detectors (the alphabetic 

array). Each slot in the array codes for the presence of a given letter identity at a given location along the 

horizontal meridian. The next level of processing combines information from different processing slots in the 

alphabetic array to provide a relative position code for letter identities. These relative-position coded letter 

identities control activation at the level of whole-word orthographic representations (O-words) via bi-

directional connections with all units at the relative position level. 

In the present study we investigate, using backpropagation neural networks, to what 

extent the constraints of learning location-invariant lexical representations leads naturally to 

the development of the kind of flexible relative-position code described in the Grainger and 

van Heuven model. Following the Grainger and van Heuven model, we implemented 

location-specific letter detectors as input, and simulated presentation of the same word at 

different locations by activating different sets of letter detectors. The task consisted in 

recognizing these words presented at different locations as identical, location-independent 

lexical units (orthographic word forms). The network was trained on a corpus of real words, 

and on artificial lexica in which the importance of letter order was manipulated 

systematically. 

One prior study has investigated the learning of location independent orthographic 

representations using backpropagation. Shillcock and Monaghan [10] used a task, which they 

called shift invariant identity mapping, that consists in mapping location-specific letters into a 



location independent representation of the same letters. For example, a neural network 

would learn to associate patterns WITH##, #WITH# and ##WITH (in which # represent blanks) 

to the common output WITH coded as a given letter identity at each of four possible 

positions (slot-coding). In their model, Shillcock and Monaghan simulated visual hemifields by 

splitting processing of the input slot at its center, sending these split inputs to two 

independent processing streams. Model splitting accounted for the superiority effect of 

exterior (i.e., first and last) letters of words in reading – network error was lower for exterior 

letters in the split model, but not lower in a non-split model. The present study provides an 

adaptation of Shillcock and Monaghan’s modelling strategy, applied here to the learning of 

location-invariant orthographic representations. 

We present three sets of simulations: (1) artificial lexica with 7 locations, (2) real word 

lexicon with 7 locations, and (3) real word lexicon in a single location. These simulations were 

designed to explore the nature of the internal representations that are developed when 

learning to map a location-specific orthographic representation onto a location-invariant 

lexical representation (whole-word orthographic representation); that is, learning certain 

ordered combinations of letters as representing words. The networks were tested with two 

key behavioral effects thought to reflect flexible orthographic coding in human participants: 

the transposed-letter priming effect, and the relative-position priming effect. Both effects 

have been observed using a masked priming paradigm that eliminates the role of various 

types of strategic responding associated with standard priming. The transposed-letter effect 

is a superior priming effect from primes formed by transposing two of the target’s letters 

(e.g., gadren-garden) compared with a prime formed by substituting two of the target’s 

letters (e.g., galsen-garden). The relative-position priming effect is a processing advantage for 

targets preceded by primes formed of a subset of the target’s letters (e.g., grdn-garden) 

compared with a prime formed of the same subset of letters in the wrong order (e.g., gdrn -

garden). Both of these priming effects argue against rigid slot-based coding schemes for 

letter encoding and are in favor of proposals for more flexible orthographic coding [e.g., 5, 6, 

11, see 3 for a review]. 

Other research has also investigated flexible coding of letter order, attempting to 

account for phenomena such as letter transposition, letter migration, repeated letters, and 

relative-position priming. For example, Gomez, Ratcliff and Perea [11] account for such 

flexibility in their model using uncertainty about letter positions. In contrast to rigid, slot-

based coding used in interactive-activation like models, letter position is represented as a 

probability distribution in their model, so that a letter present at a given position also 

provides evidence, albeit to a lesser extent, for the presence of that letter at neighbouring 

positions. However, letter position in the overlap model and similar approaches is defined as 

letter position in the word, independently of where the word is located. These models 

therefore fail to address the difficult issue of how information coded as being present at a 

particular location on the retina is mapped onto a word-centered representation. In the 

present study we train networks to map a set of location-specific letter identities (where 



location refers to location along the horizontal meridian) onto location-invariant lexical 

representations via a layer of hidden representations. We then examine whether these 

networks can simulate the kind of flexible orthographic processing seen in human 

experiments. 

2. Methods 
 All simulations used standard feedforward neural networks that were trained with a 

standard gradient descent technique with momentum [12]. We used a learning rate of 0.1, 

and a momentum value of 0.9. The criterion for successful training was reaching a target 

level for the sum of squared errors (SSE) between targets and network outputs. For the 

number of hidden units, we used the square root of the number of training patterns, 

rounded up to closest integer. Connection weights were initialized randomly within a range 

of -1.0 and 1.0. 

2.1. Input coding 

We used sparse, local coding [13]: each letter slot was encoded using 26 binary values 

indicating the presence or absence of a given letter, in alphabetical order. For instance, 

presence of letter A was encoded as [1 0 0 ... 0], B as [0 1 0 ... 0], and Z as *0 0 … 1+. Blanks 

were coded using zeros in all positions [0 0 0... 0]. Words were presented in seven positions 

along a ten-slot input vector. As illustration, Table 1 presents the encoded input pattern for 

word WITH in central position (###WITH###). The input pattern presented to the network 

would simply have been concatenation of rows 1 to 10 into a 260 binary-valued vector.  

 

Presence of letter coding (1 bit per letter) 

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



Table 1 - Example of encoded input pattern for word WITH presented in central position (###WITH###). The 

first column indicates slot position. In this example, slots 1 to 3 and 6 to 10 contain blanks. This input vector is 

260 bits long (10 slots x 26 letters per slot x 1 bit per letter). 

 

2.2. Output coding 

Each word is coded onto an output unit. Presence of the corresponding word is coded 

using a value 1, absence is coded as 0. For example, if target words are ABCD, EFGH, IJKL, 

MNOP and QRST, an input of #ABCD##### would correspond to output 1 0 0 0 0, whereas 

####IJKL## would be associated with output vector 0 0 1 0 0.  An output value of 1 coded for 

the presence of the word in the input vector, and 0 coded for its absence. As illustration, 

Table 2 presents a sample of training patterns from the target words only condition.  

 

Input vector Output vector 

A B C D # # # # # # 1 0 0 0 0 

# A B C D # # # # # 1 0 0 0 0 

# # # # A B C D # # 1 0 0 0 0 

E F G H # # # # # # 0 1 0 0 0 

# # # # # # E F G H 0 1 0 0 0 

# # # M N O P # # # 0 0 0 1 0 

Table 2 – Example of input and output for different words presented at different locations (#s represent 

blanks). 

 

2.3. Composition of the training sets 

In building training sets, we presented target words in different contexts to 

investigate if letter sequence or order influenced the representation built by 

backpropagation networks. We presented two types of training sets: (1) artificial lexica of 

four-letter strings in order to manipulate the relative importance for letter order for 

determining lexical identity, and (2) a realistic corpus of 1179 real four-letter words.  

2.3.1. Artificial lexica 

We used four types of artificial lexica. All these lexica comprised the following five 

target words: ABCD, EFGH, IJKL, MNOP and QRST. They also optionally included filler patterns 

designed to manipulate the importance of letter order, as illustrated in Figure 2. 

 



 

Figure 2 - Importance of letter order in the artificial lexica. 

 

The first training set contained the five target words only, which were the same across 

replications: (1) ABCD, (2) EFGH, (3) IJKL, (4) MNOP and (5) QRST, for a total of 35 training 

patterns (5 words x 7 positions). Networks learning this training set had 6 hidden units (that 

is, the square root of 35, rounded up). Replications differed in network initial conditions 

(random weights) only.  

The second training set, dubbed “target words and letter recombinations” or 

“recombinations” for short, included five filler words made of the same letters as the target 

words, but randomly recombined. This was done by pooling letters A to T and making filler 

words by randomly drawing letters, without replacement. Although target words were the 

same across replications, due to random selection, filler words were different in each 

replication. An example of a recombinations training set is: (1) ABCD, (2) EFGH, (3) IJKL, (4) 

MNOP, (5) QRST, (6) TMEK, (7) QGAP, (8) CHNI, (9) BJFS, and (10) RDOL, for a total of 70 

training patterns (10 words x 7 positions). Networks trained under this condition also had 9 

hidden units. Replications differed in the composition of the filler words, and in network 

initial conditions (random weights). 

The third training set, dubbed “target words and anagrams” or simply “anagrams” for 

short, included one anagram for each of the five target word. To maximize distance, we built 

the anagram by reversing letter order (i.e., ABCD  DCBA). The anagrams training set was 

the same across replications, and contained the following words: (1) ABCD, (2) EFGH, (3) IJKL, 

(4) MNOP, (5) QRST, (6) DCBA, (7) HGFE, (8) LKJI, (9) PONM, and (10) TSRQ, for a total of 70 

training patterns (10 words x 7 positions). Networks trained under this condition had 9 

hidden units (that is, the square root of 70, rounded up). Replications differed in network 

initial conditions (random weights) only.  



The fourth training set, dubbed “target words, anagrams and letter recombinations”, 

or “combo” for short, include the five target words, five anagrams (as described above) and 

five recombinations (as described above). Combo sets contain 105 training patterns (15 

words x 7 positions), and replications differed in the composition of the filler words, and in 

network initial conditions (random weights). Networks trained under this condition also had 

11 hidden units. 

With the target words only training set, a single letter determines lexical identity (for 

instance, letter A is evidence for one and only one word, ABCD, therefore letter combinations 

are not a requisite for successful learning. This is not the case with the recombinations 

training set also requires coding of letter combinations for successful learning, as the same 

letter appears in different words, but precise order information is not a requisite for 

successful encoding. Finally, the anagrams training set where letter order becomes critical for 

determining lexical identity, Therefore, the different training sets impose different levels of 

relevance of order information in learning to map location-specific letter identities onto 

location-invariant word representations. Order is least relevant in the target words only 

training set, more relevant in the recombinations condition and most relevant to the 

anagrams & combo conditions. 

2.3.2. Real word lexicon 

We also trained networks using a realistic corpus of 1179 real four-letter words, 

previously used by McClelland and Rumelhart [12]. 

2.4. Network evaluation 

We investigated the nature of the internal representations built by the 

backpropagtion algorithm while learning to map location-specific letter representations onto 

location-invariant lexical representations.  More precisely, we wanted to know whether the 

model would develop some form of flexible orthographic code similar to the type of code 

revealed in recent research on orthographic processing in skilled readers [see 3, for review]. 

We investigated these representations using test sets based on priming. In humans, priming 

effects are often explained by spreading activation among related or shared cognitive 

representations. These activation spreads may facilitate or hinder subsequent access to these 

related representations. This is generally measured as faster reaction times for better primes. 

In our models, we measured priming effects as the generalization from primes to target 

items using an accuracy measure: the more a given input primes a given target item, the 

more that target item will be activated, and thus the more accurate the network’s response 

will be. In other words, our operational definition of priming relates to the activation of the 

target word: (1) the discrepancy (MSE) between the network output and the output expected 

for this target word (a single one for the target word in a vector of zeros), or (2) the ability of 

the prime to activate the output unit associated with the target word more than any other 

output unit, measured here as accuracy.   



We manipulated two factors: the composition of the training set (4 levels of artificial 

lexica: (1) target words only; (2) target words and recombinations; (3) targets words and 

letter anagrams; (4) target words, letter recombinations and anagrams; and (5) a real word 

lexicon), and the priming regime used for testing (2 levels: relative-position priming, and 

transposed-letter priming). We combined train and test regimes in a combinatorial fashion, 

for a total of 10 simulations.  

We tested model performance under two priming manipulations: relative-position 

priming and transposed-letter priming. 

2.4.1. Relative-position priming 

We studied a network’s ability to simulate relative-position priming using primes 

formed of a subset of the target’s letters, namely three-letter sequences from four-letter 

target words. We manipulated two parameters of the prime letters: (1) order (2 levels: 

forward and backward) and (2) contiguity (2 levels: contiguous and non-contiguous). The 

exhaustive set of test patterns is given in Table 3.  

 

 Order of letters in primes  

Contiguity Forward Backward Target word 

Contiguous ABC, BCD 

EFG, FGH 

IJK, JKL 

MNO, NOP 

QRS, RST 

CBA, DCB 

GFE, HGF 

KJI, LKJ 

ONM, PON 

SRQ, TSR 

ABCD 

EFGH 

IJKL 

MNOP 

QRST 

Non-
contiguous 

ABD, ACD 

EFH, EGH 

IJL, IKL 

MNP, MOP 

QRT, QST 

DBA, DCA 

HFE, HGE 

LJI, LKI 

PNM, POM 

TRQ, TSQ 

ABCD 

EFGH 

IJKL 

MNOP 

QRST 

Table 3 – Exhaustive set of test patterns for the relative-position priming task. 

 

We measured the amount, or quality, of priming using two methods (note that primes 

were never seen during training). First, we measured network output error (MSE), expecting 

that the better the input prime, the lower the output error would be (that is, the difference 

between the network output and the expected answer, consisting of having the output node 

corresponding to the target word fully activated, and all other nodes set to zero). Second, we 

computed accuracy as the proportion (or rate) of correct network responses. A network 



response was considered correct when, for some input prime, the associated target word 

was the most active item in the lexicon (i.e., the activation of the corresponding output unit 

was greater than all other units).  

During training, input words were presented at seven locations but, as shown in Table 

4, networks were tested on central locations only (i.e., slots no. 5, 6 and 7). With this design, 

each letter of some training word was seen exactly once at each testing location. Therefore, 

letters were seen equally frequently in any position they may appear in a test prime (i.e., 

regardless of contiguity and order). Thus, differences in network performance could not be 

attributed to certain letter-slot combinations trained more than others, and would therefore 

reflect relationships between letters.  

 

 1 2 3 4 5 6 7 8 9 10 
Relative-position test prime (3 characters) 

 # # # # X X X # # # 
Training patterns 

1 A B C D # # # # # # 

2 # A B C D # # # # # 

3 # # A B C D # # # # 

4 # # # A B C D # # # 

5 # # # # A B C D # # 

6 # # # # # A B C D # 

7 # # # # # # A B C D 

Table 4 – Illustration of training and test data for the relative-position priming task. Xs indicate where the 

three letters of the test strings were presented (always in the center).  Each word in the training set was 

presented in the seven locations of the table. We see that central locations (slots 5 to 7) were trained on all 

the letters of the train data. 

 

2.4.2. Transposed-letter priming 

A network’s ability to simulate transposed-letter priming was examined using primes 

formed by transposing the two central letters of targets (e.g., ABCD-ACBD) and comparing 

the effects of these primes with primes formed by replacing the two central letters with 

letters from a different word (e.g., AGFD). These priming effects were compared with simple 

repetition priming where the prime is the same stimulus as the target (e.g., ABCD) and 

another prime condition with different central letters (e.g., AFGD). Therefore two factors 

were manipulated. First, the origin of central, or inner, letters: (1) from the target word, or 



(2) from a different word from the target word. Second, the order of central letters: (1) 

forward, or (2) backward. The exhaustive set of test patterns is presented in Table 5. It 

should be noted that in the condition with the same letters in the correct direction the prime 

is the same word as the target, a condition referred to as repetition priming in the 

behavioural literature. 

Origin of central Order of central letters  

letters Forward Backward Target word 

Same word ABCD 

EFGH 

IJKL 

MNOP 

QRST 

ACBD 

EGFH 

IKJL 

MONP 

QSRT 

ABCD 

EFGH 

IJKL 

MNOP 

QRST 

Different word AFGD 

EJKH 

INOL 

MRSP 

QBCT 

AGFD 

EKJH 

IONL 

MSRP 

QCBT 

ABCD 

EFGH 

IJKL 

MNOP 

QRST 

Table 5 – Primes in the transposed-letter priming experiment.  

 

Similarly to the experiment with relative-position priming, we presented primes in 

central locations, as shown in Table 6, such that letters in test patterns were seen exactly 

once per location during training.  

 

 1 2 3 4 5 6 7 8 9 10 

Transposed-letter priming test patterns (4 characters) 

 # # # X X X X # # # 

Training patterns 

1 A B C D # # # # # # 

2 # A B C D # # # # # 

3 # # A B C D # # # # 

4 # # # A B C D # # # 



5 # # # # A B C D # # 

6 # # # # # A B C D # 

7 # # # # # # A B C D 

Table 6 – Illustration of training and test data for the transposed-letter priming task. Xs indicate where the 

four letters of the test strings were presented (always in the centre).  Each word in the training set was 

presented in the seven locations of the table. We see that central locations (slots 4 to 7) were trained on all 

the letters of the train data. 

 

2.5. Discrimination of words and nonwords 

Finally, as a general evaluation of a network’s success in correctly learning to map 

letter representations onto lexical identity, we measured how well the network could 

discriminate words from nonwords. For a word to be considered correct, the activation of the 

correct corresponding lexical output unit had to be higher than a threshold value, empirically 

found to be appropriate at a level of 0.99. For a nonword to be considered correctly rejected, 

activations of all output lexical units had to be below threshold. 

 

3. Results 

3.1. Artificial lexica 

For the artificial lexica, a sample of 20 networks was generated for each condition. 

The target SSE for successful completion was 1. We measured the network’s ability to 

discriminate words from nonwords in the combo condition. Networks’ accuracy for words 

was 98.0% while correctly rejecting 98.0% of nonwords. 

3.1.1. Relative-position priming 

A summary of accuracy results for the relative-position task are presented in Figure 3. 

As we can see, accuracy for the backward primes decreases as the importance of letter order 

increases (left to right), while accuracy for the forward primes remains high. The networks 

therefore reveal a relative-position priming effect the size of which is determined by the 

importance of letter order in the training set. Contiguity had an overall smaller influence on 

network performance, with an advantage for non-contiguous primes emerging in certain 

conditions. Network error (MSE) results are presented in Table 7, Table 8, Table 9 and Table 

10, respectively. 

 

 Order 

Contiguity Forward Backward 

Contiguous 0.3 (0.1) 2.8 (2.5) 



Non-contiguous 1.7 (1.6) 2.7 (2.9) 

Table 7 - Network error (Mean Squared Error, or MSE) for the relative-position priming task, and the training 

set containing target words only. Values presented in parentheses represent standard deviations. Values 

presented in table should be multiplied by 10
-3

. 

 

With the relative-position priming task and the training set containing target words 

only, accuracy is perfect in all four conditions. A two-way ANOVA on network error (MSE) 

with contiguity and order as repeated factors revealed a main effect of order, F(1,19) = 8.5, p 

< 0.01, a significant interaction, F(1,19) = 5.2, p < 0.05, but no effect of contiguity, F(1,19) = 

3.4, p > 0.05. Error was lower in forward (M = 1.0x10-3) than backward (M = 2.7x10-3) primes, 

and the difference between forward and backward primes was larger in the contiguous 

(2.4x10-3) condition than the non-contiguous condition (0.1x10-3). 

 

 Order 

Contiguity Forward Backward 

Contiguous 1.2 (0.9) 11 (9) 

Non-contiguous 6 (4) 12 (9) 

Table 8 - Network error (Mean Squared Error, or MSE) for the relative-position priming task, and the training 

set containing letter recombinations. Values presented in parentheses represent standard deviations. Values 

presented in table should be multiplied by 10
-3

. 

 

With the relative-position priming task and the training set containing 

recombinations, a two-way ANOVA on accuracy with contiguity and order as factors revealed 

a main effect of order, F(1,19) = 12.8, p < 0.01, but no effect of contiguity, F(1,19) < 1, and no 

interaction, F(1,19) < 1. In contrast, a two-way ANOVA on network error (MSE) revealed a 

main effect of order, F(1,19) = 31, p < 0.001, an effect of contiguity, F(1,19) = 5.9, p < 0.05, 

and no interaction, F(1,19) = 4.8, p < 0.05. Accuracy was larger for the forward primes (M = 

1.0) than backward primes (M = 0.97) and error was lower for forward primes (M = 0.003) 

than backward primes (M = 0.012). In addition, error was lower in contiguous (M = 6.1x10-3) 

than non-contiguous primes (M = 9x10-3), and the difference between contiguous and non-

contiguous primes was larger in the forward condition (4.8x10-3) than the backward (1.0x10-

3) condition. 

 

 Order 

Contiguity Forward Backward 



Contiguous 28 (8) 125 (9) 

Non-contiguous 14 (5) 140 (10) 

Table 9 - Network error (Mean Squared Error, or MSE) for the relative-position priming task, and the training 

set containing anagrams. Values presented in parentheses represent standard deviations. Values presented 

in table should be multiplied by 10
-3

. 

 

With the relative-position priming task and the training set containing anagrams, a 

two-way ANOVA on accuracy with contiguity and order as factors revealed a main effect of 

order, F(1,19) = 1777, p < 0.001, and a significant interaction, F(1,19) = 96, p < 0.001, but no 

effect of contiguity, F(1,19) = 1.1, p > 0.05. Similarly, a two-way ANOVA on network error 

(MSE) revealed a main effect of order, F(1,19) = 2935, p < 0.001, no effect of contiguity, 

F(1,19) = 2.2, p > 0.05, and a significant interaction, F(1,19) = 94, p < 0.001. Accuracy was 

larger for forward primes (M = 0.88) than backward primes (M = 0.14), and error was lower 

for forward primes (M = 0.02) than backward (M = 0.13) primes. The interaction stems from 

the fact that these differences were larger for non-contiguous primes than for contiguous 

primes. 

 Order 

Contiguity Forward Backward 

Contiguous 22 (6) 89 (6) 

Non-contiguous 16 (5) 89 (9) 

Table 10 - Network error (Mean Squared Error, or MSE) for the relative-position priming task, and the combo 

training set.  Values presented in parentheses represent standard deviations. Values presented in table 

should be multiplied by 10
-3

. 

 

With the relative-position priming task and the training set containing anagrams and 

recombinations (combo), a two-way ANOVA on accuracy with contiguity and order as factors 

revealed a main effect of order, F(1,19) = 1650, p < 0.001, and a significant interaction, 

F(1,19) = 9.4, p < 0.01, but no effect of contiguity, F(1,19) = 2.1, p > 0.05. Similarly, a two-way 

ANOVA on network error (MSE) revealed a main effect of order, F(1,19) = 2045, p < 0.001, no 

effect of contiguity, F(1,19) = 3.8, p > 0.05, and a significant interaction, F(1,19) = 8.4, p < 

0.01. This pattern of results is identical to the anagrams condition: accuracy was larger for 

forward primes (M = 0.86) than backward primes (M = 0.10), and error was lower for forward 

primes (M = 0.02) than backward (M = 0.09) primes. The interaction stems from the fact that 

these differences were larger for non-contiguous primes than for contiguous primes. 

In sum, we found a robust effect of letter order (namely, a higher accuracy on forward 

than on backward primes), a relative-position priming effect, whereby an ordered subset of 

the target’s letters provides a better match to the target than the same subset of letters in 



reversed order. As expected, this effect was strongest in the anagrams and combo conditions 

where letter order matters the most, but it was also present in the recombinations condition. 

It was nearly inexistent for the condition in which letter order does not matter, that is the 

target words only condition. We also found an order by contiguity interaction, which was 

significant only in the anagrams and combo conditions, and reflected an advantage for the 

non-contiguous primes in the forward condition.  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Forward Backward Forward Backward Forward Backward Forward Backward

A
cc

u
ra

cy

Contiguous Non-contiguous

ComboAnagramsRecombinationsTarget words only

 

Figure 3 - Summary of accuracy results for the relative-position priming task. Example primes for the target 

ABCD are: ABC for the forward and contiguous condition, ABD for the forward and non-contiguous, CBA for 

the backward and contiguous and DBA for the backward and non-contiguous. 

3.1.2. Transposed-letter priming 

A summary of accuracy results for the transposed-letter priming task are presented in 

Figure 4. As can be seen in this figure, the networks successfully simulated the transposed-

letter priming effect, and the size of this effect was practically as large as the effect of 

repetition priming. Network error (MSE) results are presented in Table 11, Table 12, Table 13 

and Table 14, respectively for the training sets composed of target words only, containing 

recombinations, containing anagrams, and containing both (recombinations and anagrams). 

 



Origin of central Order of central letters 

Letters Forward Backward 

Same 0.04 (0.01) 0.3 (0.3) 

Different 140 (60) 130 (40) 

Table 11 - Network error (Mean Squared Error, or MSE) for the transposed-letter priming task and the 

training set composed of the target words only. Values presented in parentheses represent standard 

deviations. Values presented in table should be multiplied by 10
-3

. 

 

With the transposed-letter priming task and the training set composed of the target 

words only, a two-way ANOVA on accuracy with contiguity and order as factors revealed a 

main effect of origin, F(1,19) = 107, p < 0.001, but no main effect of order, F(1,19) < 1, and  

no interaction, F(1,19) < 1. Similarly, a two-way ANOVA on MSE revealed a main effect of 

origin, F(1,19) = 187, p < 0.001, but no main effect of order, F(1,19) = 3.8, p > 0.05, and no 

interaction, F(1,19) = 4.0, p > 0.05, although the latter two effects were trending. Accuracy 

was higher for primes with central letters from same word as the target (M = 1.0) than from a 

different word (M = 0.49) and smaller error (M = 1.7x10-4 for same, and M = 0.13 for 

different). 

 

Origin of central Order of central letters 

Letters Forward Backward 

Same 0.007 (0.003) 0.12 (0.2) 

Different 80 (20) 90 (20) 

Table 12 - Network error (Mean Squared Error, or MSE) for the transposed-letter priming task and the 

training set comprising recombinations. Values presented in parentheses represent standard deviations. 

Values presented in table should be multiplied by 10
-3

. 

 

With the transposed-letter priming task and the training set comprising 

recombinations, two-way ANOVAs revealed a similar pattern of results as for the target 

words only condition: a main effect of origin on accuracy, F(1,19) = 268, p < 0.001, and on 

network error, F(1,19) = 386, p < 0.001, but no effect of order, nor interactions, Fs < 2.6, ps > 

0.1. 

 

Origin of central Order of central letters 

Letters Forward Backward 

Same 0.014 (0.010) 11 (10) 



Different 60 (20) 60 (20) 

Table 13 - Network error (Mean Squared Error, or MSE) for the transposed-letter priming task and the 

training set comprising anagrams. Values presented in parentheses represent standard deviations. Values 

presented in table should be multiplied by 10
-3

. 

 

With the transposed-letter priming task and the training set comprising anagrams, a 

two-way ANOVA on accuracy revealed a similar pattern of results, that is, a main effect of 

origin, F(1,19) = 73, p < 0.001, but no effect of order and no interaction, Fs < 1.1. However, a 

two-way ANOVA on MSE revealed an additional significant effect of order, F(1,19) = 5.4, p < 

0.05, in addition to the main effect of origin, F(1,19) = 267, p < 0.001. The interaction 

between order and origin was not significant, but trending, F(1,19) = 3.7, p > 0.05. 

 

Origin of central Order of central letters 

Letters Forward Backward 

Same 0.0028 (0.0016) 9 (7)  

Different 51 (12) 54 (10) 

Table 14 - Network error (Mean Squared Error, or MSE) for the transposed-letter priming task and the 

training set comprising anagrams and recombinations (combo). Values presented in parentheses represent 

standard deviations. Values presented in table should be multiplied by 10
-3

. 

 

The pattern of results is the same with the training set comprising anagrams and 

recombinations (combo) as with the training set comprising only anagrams: a main effect of 

origin on accuracy, F(1,19) = 180, p < 0.001, but no effect of order nor interactions Fs < 1.9. 

For network error (MSE), we found main effects of order, F(1,19) = 26, p < 0.001, and of 

origin, F(1,19) = 564, p < 0.001, but no interaction between order and origin, F(1,19) = 3.1, p > 

0.05. 

In short, the pattern across artificial lexica was consistent: higher accuracy and lower 

error when central letters were from the same word (i.e., the target) than from a different 

word, an intuitively appealing conclusion (see Figure 4). We also found a weaker effect of 

direction, which turned out significant only for network error only and when order was most 

relevant to the task (i.e., in conditions in which anagrams were included as fillers). This effect 

of direction reflects the stronger effects of repetition priming compared with effects of 

transposed-letter priming. 



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Forward Backward Forward Backward Forward Backward Forward Backward

A
cc

u
ra

cy
Same Different

ComboAnagramsRecombinationsTarget words only

 

Figure 4 - Summary of accuracy results for the transposed-letter priming task. Example primes for the target 

ABCD are: ABCD for the forward and same condition, AFGD for the forward and different condition, ACBD for 

the backward and same condition, and AGFD for the backward and different condition. The forward-same vs. 

forward-different comparison measures repetition priming, and the backward-same vs. backward-different 

comparison measures transposed-letter priming. 

 

3.2. Real word lexicon 

 A single network was trained with the real word training set of 1179 words of 4 letters 

in length. The target SSE for successful completion was 30. The training set contained 7 x 

1179 = 8253 patterns, and the backpropagation network had 91 hidden units. In order to test 

word-nonword discrimination in this network a set of nonwords were derived from each real 

word by changing one letter (e.g., darm, stob), for a total of 1179 nonwords. The 

replacement location and identity of the substitution letter were randomly chosen. Our 

model exhibited perfect recognition accuracy for words (100.0%). The rate of correctly 

rejecting nonwords was 94.1%. Most incorrectly accepted nonwords (92.3%) were anagrams 

of real words (e.g., UDLY for DULY and ICOL for COIL). 

3.2.1. Relative-position priming 

Accuracy results for relative-position priming are presented in Figure 5 and error 

results in Table 15. The results show a relative-position priming effect with an advantage of 

forward primes over backward primes.  



 

 

Figure 5 - Accuracy results for the relative-position priming task, and the training set containing real words. 

No error bar is provided for these single data points. Examples are given for real word ABLE. 

 

 Order 

Contiguity Forward Backward 

Contiguous 7.7 8.1 

Non-contiguous 6.8 7.8 

Table 15 - Network error (Mean Squared Error, or MSE) for the relative-position priming task, and the training 

set containing real words. Values presented in table should be multiplied by 10
-4

. 

 

3.2.2. Transposed-letter priming 

Accuracy results for transposed-letter priming are presented in Figure 6 and error 

results in Table 16. The results show a transposed-letter priming effect.  Accuracy is higher 

when central letters are from the target word than when they are from a different word even 

when the order of letters is reversed (backward condition). This transposed-letter priming 

effect is practically as strong as the repetition priming effect.  



 

 

Figure 6 - Accuracy results for the transposed-letter priming task, and the training set containing real words. 

No error bar is provided for these single data points. Examples are given for the target word ABLE. 

 

Origin of central Order of central letters 

Letters Forward Backward 

Same 0.0 0.1 

Different 1.1 1.1 

Table 16 - Network error (Mean Squared Error, or MSE) for the transposed-letter priming task and the 

training set composed of real words. Values presented in table should be multiplied by 10
-3

. 

 

3.2.3. Priming effects in a network trained with words at a single location 

The network trained with a real word training set exhibited relative-position and 

transposed-letter priming effects. We interpret this ability to simulate such priming effects as 

reflecting an intervention of the type of flexible orthographic code that is developed when 

learning to map location-specific orthographic representations onto location-invariant 

representations. More precisely, the key hypothesis here is that it is the constraints involved 



in mapping totally independent sets of letter identities (i.e., the same letters appearing at 

different locations) onto the same lexical identity that forces the network to develop 

intermediate orthographic representations that acquire the kind of flexibility that is seen in 

experiments testing skilled readers. Therefore, such flexibility, as reflected in the simulated 

priming effects, should not be visible when the network is only trained at one location. Our 

final simulation study puts this prediction to test by training the network on only the central 

location. 

In Figure 7, we present accuracy results for the relative-position priming task and the 

training set containing real words when words are only presented at the central location 

during training. As we can see, the priming effect is still present, as illustrated by a higher 

accuracy with forward than backward primes. However, accuracy for non-contiguous primes 

is now very small (less than 5%) suggesting that networks have not developed orthographic 

representations that are as flexible as when words are presented at different positions 

(compare Figure 5 and Figure 7).  

 

 

Figure 7 - Accuracy results for the relative-position priming task using the training set comprising real words 

but trained on central positions only. 

 



In Figure 8, we present accuracy results for the transposed-letter priming task and the 

training set containing real words when words are only presented at the central location 

during training. As we can see, the transposed-letter priming effect effectively disappears 

when training only the central location (compare Figure 6 and Figure 8). This confirms our 

hypothesis that networks develop flexible orthogaphic representations only when the task 

involves processing input words presented in different positions.  

 

 

 
Figure 8 – Accuracy results for the transposed-letter priming task using the training set comprising real words 

but trained on central positions only. 

 

4. General discussion 
 

Neural networks were trained using backpropagation to map location-specific letter 

identities onto location-invariant lexical identities. The location-specificity of letter 

representations implied that when the same “word” input was presented at different 

locations, the network had to learn to map completely independent input representations 

onto the same output. In other words, the networks were trained to recognize that a given 



word is the same word independently of its location (location invariance). According to one 

account of orthographic processing in skilled readers [5], location-invariance is already 

achieved at a prelexical level of orthographic representation, where letter identities are 

coded independently of their position on the retina but relative to their position in the word. 

Furthermore, at this level of representation, letter position information is thought to be 

coded in a flexible manner, contrary to the rigid position-specific coding used in slot-based 

approaches. It is this flexibility that enables the Grainger and van Heuven model to capture 

empirical phenomena such as transposed-letter priming and relative-position priming. 

 The present study examined whether neural networks trained to map location-

specific letter identities onto location-invariant lexical representations would acquire 

intermediate representations that would allow the network to exhibit the properties 

associated with flexible orthographic processing. The networks were trained with a variety of 

training regimes, including a real word lexicon, and artificial lexica in which the importance of 

letter order was systematically manipulated. These artificial training regimes forced the 

network to pay varying levels of attention to order information by varying the relevance of 

this information for the task. All networks were successful in learning the task, and the real 

word lexicon as well as the most complete artificial lexicon (the combo training set) exhibited 

accurate word – nonword discrimination following training. The networks were further 

evaluated on the two benchmark phenomena: transposed-letter priming and relative-

position priming. Network accuracy (percentage of trials in which the target is the most 

activated output representation) and network error (MSE) revealed transposed-letter 

priming and relative-position priming.  In the simulations run on the networks trained with 

artificial lexica, transposed-letter priming effects were found even when letter order was not 

important to solve the task (the target words only condition). In contrast, relative-position 

priming effects increased as the importance of letter order increased. The effects were small 

in the target words only condition, larger in the recombinations condition and largest in the 

conditions containing anagrams. 

The simulations run on the network trained with a corpus of real words showed very 

large effects of transposed-letter priming that were practically as large as the effects of 

repetition priming. Relative-position priming effects were also evident, but the size of the 

priming effect was much smaller than that found with transposed-letter primes. This is in line 

with the results typically found with human participants [3]. Furthermore, relative-position 

priming effects were, if anything, greater for non-contiguous primes, a result that is line with 

certain models of orthographic processing [5, 6]. It could however be the case that the 

advantage for non-contiguous primes is the result of these primes having both of the target’s 

outer letters appearing as outer letters in the prime (i.e., preceded or followed by a space). 

This was not the case for contiguous primes for which the last letter in the prime stimulus 

was not the last letter in the target word. Finally, both transposed-letter and relative-position 

priming effects disappeared with the network was trained on words presented at a single 



location, thus demonstrating the importance of shifts in location at the input for generating 

flexible, intermediate orthographic representations. 

Summing up, two critical elements were found to be necessary for networks to 

develop flexible orthographic coding: (1) learning to map location-specific representations 

onto a location-invariant representation (i.e., having the same word presented at multiple 

locations in the input), and (2) training the network on a corpus in which letter position 

provides important information for constraining lexical identity. The real corpus had this 

characteristic, as many words differed only by a single letter, and the corpus included several 

anagrams. The results of the present simulations therefore suggest that, given the 

characteristics of natural language, flexible orthographic processing might emerge as a 

natural consequence of having to learn to map location-specific letter identities onto 

location-invariant lexical representations during reading acquisition.  
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